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The paper addresses the issue of an active sandwich panel made of elastic faceplates and a
poroelastic core. The panel is supposed to be active thanks to piezoelectric patches glued to
the one of elastic layers. This piezoelectric actuator is used to excite the panel vibrations in the
low frequency range with the aim to reduce the transmitted wave. A complete description of the
sandwich behaviour is obtained using a finite element model implemented in FEMLABr environ-
ment. The poroelastic material is modeled using a recent formulation (by Atalla et al.) valid for
harmonic oscillations, but the classical Biot formulation is also implemented. Coupling occurring
between poroelastic material and plates, and between elastic plate and piezoelectric patches is
fully considered. The achieved numerical model allows prediction of transmission coefficient for
plane waves under normal incidence. Hence, some numerical experiments can be offered for mul-
tiple assembly configurations whose ultimate goal is to determine the best assembly and the best
control strategy for reducing the transmission over a wide frequency range.

1 Introduction

Porous materials has been widely used as very effective and in fact the most vital components of noise mufflers.
It is a well-known fact that vibroacoustic transmission of high frequency range can be passively reduced by
mufflers made of appropriately chosen layer(s) of porous materials. However, it has been also recognized that
when the lower frequencies are dominant, an active approach to the noise reduction is necessary. These facts
shall be once again illustrated in the present paper where we propose and analyse an active sandwich panel as a
possible solution to the problem of reduction of broad spectrum noise. The core of sandwich panel is made of
porous material and is responsible (working together with the elastic faceplates of bigger mass) for the passive
noise reduction; the active reduction can be achieved thanks to a piezoelectric actuator. The whole panel was
modeled using FEMLABr environment. It is important to notice here that for many porous materials, in lower
frequencies, a more complicated but at the same time, more realistic, poroelastic modeling usually needs to be
used, and it is indispensable in vibroacoustic applications. Since the modeling of poroelasticity in FEMLABr

is by no means trivial, a short description of poroelastic models as well as their convincing validation constitute
the first part of this paper. In the second part, the results of FE analysis of sandwich panel are given.

2 Poroelasticity: modeling using FEMLABr

2.1 Two formulations of isotropic poroelasticity

The Biot’s displacement formualtion. In 1956 Biot [1, 2] presented the theory of poroelasticity where the
behaviour of the two-phase porous medium is completely described by the displacements of solid and fluid
phases. Therefore, this classical formulation can be called by the name of the displacement formulation (u-v).
Biot derived the equations of equilibrium where partial stress tensors associated with the skeleton particle and
the macroscopic fluid particle are (independently) linked with the solid and fluid macroscopic displacements.
Therefore, in these poroelasticity equations of motion there are some important terms responsible for the cou-
pling between the solid and fluid phase: these terms depend on the so-called mass coupling coefficient and
viscous damping coefficient. Biot provided also the constitutive relations where the partial stress tensors are
linearly related to the partial strain tensors prevailing in the skeleton and the interstitial fluid. In these equa-
tions there are only 4 material constants: the shear modulus of porous material (which, consequently, is the
shear modulus of frame) and three dilatational Lamé-like coefficients (they are functions of bulk moduli of: the
material of frame, frame in vacuum, and fluid). One of these coefficients refers to the isotropic fluid phase, an-
other one – together with the shear modulus – to the isotropic solid phase, and finally (only) one is responsible
for the constitutive coupling between both phases. The kinematic equations for poroelastic medium are (non-
coupled) classical kinematic relations of linear elasticity and fluid mechanics. Combining all these equations



together results in the set of partial differential equations which forms the displacement equations of (isotropic,
linear) poroelasticity. Below, we present these equations for the case of harmonic motion (with the angular
frequency ω) of a poroelastic medium with constant material properties:

(λ̃s + µs)uj|ji + µs ui|jj + ω2%̃11 ui +

coupling terms︷ ︸︸ ︷
λ̃fs vj|ji + ω2%̃12 vi = 0 ,

λ̃fs uj|ji + ω2%̃12 ui︸ ︷︷ ︸
coupling terms

+λ̃f vj|ji + ω2%̃22 vi = 0 .
(1)

Here µs, λ̃s, λ̃f, λ̃fs are the four material constants of isotropic poroelasticity, whereas %̃11, %̃22, %̃12 are the
frequency-dependent effective densities. The coefficients λ̃fs and %̃12 are responsible for the mentioned consti-
tutive and equilibrium coupling, respectively. Since the unknowns are the displacements of solid, ui, and fluid
phase, vi, then we shall have 6 DOFs in every point of 3D poroelastic model.

The mixed displacement-pressure formualtion. In 1998 Atalla et al. [3, 4] proposed the so-called displace-
ment-pressure formulation (u-p) which, in fact, is a variation of the Biot’s model – however, valid only for
harmonic oscillations. In this case, the fluid displacements, vi, can be excluded completely from the Biot’s
equations (1), and replaced by the fluid phase pressure, p:

vi =
φ

ω2%̃22
p|i −

%̃12

%̃22
ui ,

(
while, from one of the constitutive

relations we always have p = −
λ̃s vi|i + λ̃fs ui|i

φ

)
. (2)

The obtained equations (presented here for the case of constant material properties) are mathematically equiv-
alent to the harmonic equations of Biot’s formulation (1):

the behavior of skeleton “in vacuo”︷ ︸︸ ︷
(ˆ̃λs + µs)uj|ji + µs ui|jj + ω2%̃ ui +

a coupling term︷ ︸︸ ︷
γ̃ p|i = 0 ,

−ω2 %̃22γ̃

φ2
ui|i︸ ︷︷ ︸

a coupling term

+ ω2 %̃22

λ̃f
p + p|ii︸ ︷︷ ︸

the behavior of fluid
when the frame is rigid

= 0 .
(3)

In these equations the following quantities have been introduced: ˆ̃
λs def= λ̃s − (λ̃fs)2

λ̃f , %̃
def= %̃11 − (%̃12)2

%̃22
, and

γ̃
def= φ

(
%̃12

%̃22
− λ̃fs

λ̃f

)
, whereas φ is the porosity. Unknowns are the solid phase displacements, ui, and fluid phase

pressure, p, so there are only 4 DOFs in every point of 3D poroelastic model.

2.2 Modeling in FEMLABr

FEMLABr is a tool for Finite Element Analysis, especially when dealing with multiphysics problems: the
user combines some FEMLABr Physics modes and introduces additional coupling terms to the constitutive
equations. Such an approach can be proposed when modeling piezoelectricity: the Electrostatics mode (avail-
able as one of the Electromagnetics application modes) can be combined with one of the Structural Mechanics
application modes; then the multiphysics coupling needs to be added. Modeling of piezoelectricity may be
even simpler since the specific Piezoelectric application modes are available from the additional Structural
Mechanics Module (in this way the piezoelectric actuator of sandwich panel was modeled).

Unfortunately, FEMLABr provides no specific module (nor mode) for porous materials. Obviously, porous
materials with rigid frame are modeled using the fluid-equivalent approach, so in this case the FEMLABr Fluid
Dynamics mode or even the Acoustic mode can be used. Yet, there is no specific application mode or template
designed for poroelastic materials. Moreover, the porous materials with elastic frame cannot be modeled in the
multiphysics way, i.e., by using (existing) Fluid and Solid Mechanics modes to model, respectively, fluid and
solid phase. This is because we have not only the classical multiphysics coupling (in the constitutive relations),
but also a very strong coupling in the equations of equilibrium. Therefore, as a matter of fact, we have a
new specific set o partial differential equations (see Equations (1) or (3)), which we need to program “from
scratch” using one of the PDE modes (this is much more laborious but, obviously, the most general and flexible
approach). We implemented both formulations of (harmonic) poroelasticity as 1D, 2D (plane strain state), and
3D models; we used 2nd-order Lagrange shape functions (quadratic polynomials) for all dependent variables.



2.3 Validation of poroelastic models in FEMLABr

Tests were performed to prove the validity of the poroelastic models programmed in FEMLABr. The tests
consisted in solving the problem of propagation of harmonic waves in a layer of porous material fixed on a
rigid impervious wall as presented in Figure 1. The layer oscillations were excited by the external pressure of
amplitude p (its value is of no importance since we use the linear theory, and p = 1 Pa was taken in all calcu-
lations) and the angular frequency ω = 2πf (for different values of frequency f , see below). The final purpose
was to calculate the acoustic impedance at normal incidence at the surface of the layer of porous material. For
this simple 1-dimensional problem the analytical solution exists and can be found in [2]. Therefore, the com-
parison with the analytical results, and a mutual validation consisting in the comparison between models based
on two different formulations (u-v and u-p) could be performed.

Porous material = glass wool “Domisol Coffrage”:

• tortuosity, α∞ = 1.06 ,

• density of frame, %1 = 130 kg/m3,

• flow resistivity, σ = 40 000 N s/m4,

• porosity, φ = 0.94 ,

• shear modulus, µs = 2.2(1 + 0.1j) · 106 N/m2,

• Poisson coefficient, ν = 0 ,

• characteristic dimensions of the pores:
Λ = 0.56 · 10−4 m , Λ′ = 2Λ = 1.12 · 10−4 m .

Figure 1: A layer of porous material fixed on a rigid wall. The layer width is d = 0.1 m, and the material is the
glass wool with characteristics presented above. An acoustic harmonic wave propagates perpendicularly onto
the surface of porous material.

Figure 2: The mesh of 1D models and some results for the frequency f = 300 Hz: the fluid pressure (left), and
the fluid and solid phase displacements (right).

Figure 3: The meshes of 2D models (left), and 3D models (right). Scaled deformations show the solid phase
and colormaps the fluid pressure obtained for the frequency f = 300 Hz. The colorscale can be checked in
Figure 2 (left) or Figure 4 (left).



The porous material was glass wool with parameters presented in Figure 1. It was modeled in FEMLABr

as: 1D, 2D, and 3D poroelastic models (both formulations for every case). In the 2D and 3D cases the normal
displacements on lateral boundaries were fixed to correctly model the problem. For the 2D case the problem
was also modeled as non-parallel to the axes of the system of reference (see Figure 3 (left)) to prove the most re-
liable validation. The finite element meshes together with some results obtained for the frequency f = 300 Hz
are presented in Figures 2 and 3. These and some of the following figures present the solid and fluid phase
displacements as well as the fluid phase pressure. Obviously, in the case of the mixed displacement-pressure
formulation, the results of FE analysis were the solid displacements and fluid pressure; the fluid displacements
were calculated a posteriori using Equation (2)1. Similarly, for the classical displacement formulation the FE
analysis provided the solid and fluid displacements, and then the fluid pressure was calculated using Equa-
tion (2)2. Nevertheless, we may say right now that the mutual validation turned out to be flawless: for both
formulations all the models yielded “numerically identical” results of all quantities (i.e., with extremely small
discrepancies – see also the comment and the end of this Section).

For every model the calculations were carried out for the frequencies from 300 Hz to 1400 Hz. The acoustic
impedance was calculated using the following formula

Z(M) =
pair(M)
v̇air(M)

=
p

j ω vair(M)
, where vair(M) = φ v + (1− φ)u (4)

results from the condition of displacement continuity between the air and the two-phase medium. Here,
pair(M), v̇air(M), vair(M) are the pressure, velocity, and displacement of the air in point M , while u and v are
the solid and fluid phase displacements parallel to the direction of propagation (i.e., perpendicular to the sur-
face of poroelastic layer). In most cases they were equal to u1 and v1, respectively. In the case of the so-called

Figure 4: The fluid pressure and solid and fluid displacements in the poroelastic layer for the frequency range
300-1400 Hz. These plots were “identical” for all the numerical models.

Figure 5: The acoustic impedance calculated analytically and numerically. No discrepancies can be noticed for
any of the used models. The different curves can be distinguished only on the mightily zoomed plots. However,
the distinction between the 1D, 2D, and 3D u-v-models cannot be even seen after zooming (all the three curves
overlie, so only the one least-recently plotted is visible). The difference between the 2D and 3D u-p-models is
also extremely small.



non-parallel models they were calculated as follows: u = u1 cos(α) + u2 sin(α), v = v1 cos(α) + v2 sin(α),
where α is the angle of the direction of propagation to the x1-axis. These displacements and the fluid pressure
are presented in Figure 4. The “perpendicular” displacements, i.e., in the directions x2 and x3, or in the case of
non-parallel models calculated as u⊥ = u2 cos(α)−u1 sin(α), v⊥ = v2 cos(α)−v1 sin(α), were also checked
and proved to be “numerically equal” zero.

Figure 5 presents the analytical and numerical calculations of the impedance. The compliance of all the
numerical models with the analytical solution is extremely good. The cause for such an exquisite accuracy
of numerical results lies within the fact that the problem is perfectly 1-dimensional, so the convergence of FE
analysis is very fast and accurate.

3 Controlled reduction of vibroacoustic transmission: FE analysis of an active
sandwich panel

3.1 Structure, geometry, and FE mesh of sandwich panel

The poroelastic models validated in the previous Section were used in modeling of sandwich panel made of
two elastic faceplates and a poroelsatic core. The panel is fixed alongside the lateral faces (the elastic faceplates
are pin-supported). It is supposed to be an active vibrations and sound absorber so a piezoelectric actuator
(composed of two piezoelectric patches) is mounted on one of the elastic layers (which therefore, we shall call
by the name of active faceplate). The actuator was modeled using FEMLABr Piezoelectricity Mode found in
the additional Structural Mechanics Module. The geometry, some material data as well as the finite element
mesh of the quarter of panel are presented in Figure 6. We took advantage of the symmetry of panel by applying
appropriate boundary conditions.

Panel dimensions : 59 × 59 × 12 [mm]

Layers :

• elastic faceplates
thickness = 1 mm
material = aluminium

• poroelastic core
thickness = 10 mm
material = glass wool (see Fig-

ure 1)

• piezoelectric patches
dimensions = 38×38×0.25 [mm]
material = PZT

Interactions :

• poroelastic core
� elastic faceplates

• active elastic faceplate
� piezoelectric patches

No interaction between the poroelastic
core and the (lower) piezoelectric patch.

Figure 6: FE model of one quarter of sandwich panel. Panel characteristics and modeling simplifications.

3.2 Concepts of vibroacoustic control and transmission reduction analysis

The concept of vibroacoustic control using the sandwich panel can be explained as follows. An incident
acoustic wave propagates onto the passive faceplate. The wave is reflected and transmitted through the panel.
The piezoelectric actuator is used to excite the panel vibrations so that the normal velocity of the active face-
plate is minimized which means the reduction of transmitted wave. On the active faceplate a piezoelectric
sensor (not modeled here) can also be planted, so that the velocity can be measured and thus the transmission
reduction process can be controlled.

In the analysis of vibroacoustic transmission reduction we shall assume that the acoustic wave is plane and
harmonic. In practice, we can control transient or multi-frequency vibrations applying an appropriate signal
to the actuator. This harmonic analysis, however, may also be used to control some predominant components



of vibration spectrum, and since the problem is modeled linearly, we can superpose the results obtained for
different frequencies. Now, for the purpose of our analysis we define the following quantities

wp0

def=
w

(p0 6=0 , V0=0)
a.p.center

p0

[m
Pa

]
, wV0

def=
w

(p0=0 , V0 6=0)
a.p.center

V0

[m
V

]
, (5)

describing how the deflexion in the center of active plate depends on the excitation by acoustic pressure, p0,
applied to the passive faceplate, or (respectively) by voltage, V0, applied to both piezoelectric patches fixed to
the active plate. In both cases, the excitation is harmonic, and the deflections are from steady-state response for
the same given frequency f ; obviously, the values p0 and V0 are the amplitudes of excitations.

Now, since the analysis is linear we can take advantage of the superposition principle and we can calculate
the deflexion in the center of active plate for the given arbitral pressure, p0, and voltage, V0, as follows

wa.p.center = wp0 p0 + wV0V0 . (6)

Since the acoustic wave is plane, the biggest deflexions of the panel faceplates (under pressure excitation)
are in their centers. Therefore, a low transmission means small deflection (velocity) of the center of active plate.
We can control this deflexion by means of the piezoelectric actuator (and sensor). We can calculate the voltage
that should be applied to the actuator by zeroing deflection in the active plate center: wa.p.center = 0; we obtain

V0 = −wp0

wV0

p0 = α p0 , where we define a control coefficient α
def= −wp0

wV0

[ V
Pa

]
. (7)

Now, for the given amplitude of acoustic pressure we should have

|wp0,α|
def=

∣∣∣∣∣w
(p0 6=0 , V0=α p0)
a.p.center

p0

∣∣∣∣∣ [m
Pa

]
≈ 0 � |wp0 | , and in general: max

∣∣∣w(p0 6=0 , V0=α p0)
whole active plate

∣∣∣� |wp0 p0| ,

which means that the vibrations of active faceplate are diminished and thus the vibroacoustic transmission is
minimized. Obviously, the validity of the last inequality depends also on the form of vibrations excited by
the piezoelectric actuator, and for some other panel configurations than the one presented here, may not be
fully satisfied. Then, we might need to remodel the actuator, or rather take a more cumbersome criterium
simultaneously minimizing the deflections in the center and some other points of active plate.

3.3 Results of FE analysis

Table 1 presents some results of FE analysis of vibroacoustic transmission reduction obtained for several fre-
quencies. Complementarily, all successive stages of analysis performed for the frequency of 400 Hz are pre-
sented in Figure 7, while Figure 8 compares only the vibrations of panel with and without control for the
frequency of 1000 Hz. Finally, in Figure 9 we can compare uncontrolled vibroacoustic transmission through
the panel excited by the harmonic acoustic waves of some higher frequencies, namely: 2, 4, and 6 kHz. Here,
it is easily to notice that the amplitude of active plate displacements is strongly diminished already for the fre-
quency of 4 kHz (though, let us repeat, no active reduction was performed: the active plate was in fact passive);
in the case of 6 kHz these displacements are negligible (therefore, no active reduction is needed).

f wp0 wV0 α wp0,α

[Hz]
ˆ m

Pa

˜ ˆ m
V

˜ ˆ V
Pa

˜ ˆ m
Pa

˜
200 +5.4136 · 10-9

-4.0743 ·10-10 · j
-3.9269 ·10-8
+2.4664 ·10-8 · j

+1.0353 ·10-1
+5.4651 ·10-2 · j

-1.1959 ·10-18
-1.4975 ·10-19 · j

400 +5.4928 ·10-9
-3.8361 ·10-10 · j

-3.4592 ·10-8
+2.3640 ·10-8 · j

+1.1341 ·10-1
+6.6412 ·10-2 · j

+2.7335 ·10-18
-7.8865 ·10-19 · j

700 +5.7625 ·10-9
-3.1800 ·10-10 · j

-2.1294 ·10-8
+2.1212 ·10-8 · j

+1.4330 ·10-1
+1.2781 ·10-1 · j

-1.8934 ·10-18
+2.0090 ·10-19 · j

1000 +6.3667 ·10-9
-2.0573 ·10-10 · j

+1.5265 ·10-9
+1.8487 ·10-8 · j

-1.7190 ·10-2
+3.4296 ·10-1 · j

-7.3485 ·10-19
+1.5381 ·10-18 · j

1500 +9.9421 ·10-9
+4.2990 ·10-10 · j

+9.3573 ·10-8
+2.0541 ·10-8 · j

-1.0233 ·10-1
+1.7868 ·10-2 · j

+2.6626 ·10-18
+3.0025 ·10-19 · j

2000 -3.4683 ·10-8
+3.0667 ·10-8 · j

-7.4316 ·10-7
+6.4889 ·10-7 · j

-4.6925 ·10-2
+2.9242 ·10-4 · j

+7.2414 ·10-17
-2.4210 ·10-17 · j

4000 -6.1747 ·10-10
+2.0959 ·10-11 · j

-4.3402 ·10-8
+4.7801 ·10-9 · j

-1.4109 ·10-2
-1.0710 ·10-3 · j

+9.8038 ·10-21
-2.5750 ·10-20 · j

Table 1: Results of FE analysis of vibroacoustic transmission reduction.



Excitation frequency: f = 400 Hz

• excitation with the acoustic pressure, p0 = 1 Pa , without control (V0 = 0 V)

vertical displacement [m] fluid phase pressure [Pa]

• excitation with the piezo-device, V0 = 1 V , without acoustic pressure (p0 = 0 Pa)

vertical displacement [m] fluid phase pressure [Pa]

• excitation with the acoustic pressure, p0 = 1 Pa , with the piezo-device control, V0 = α p0

vertical displacement [m] fluid phase pressure [Pa]

Figure 7: Panel deformation, its vertical displacements, and pressure in the fluid phase of poroelastic core.
Harmonic vibrations with frequency 400 Hz.



Panel vibrations (f = 1000 Hz) without control [m] Panel vibrations (f = 1000 Hz) with control [m]

Figure 8: Panel vibrations with and without control for harmonic frequency of 1000 Hz.

f = 2000 Hz f = 4000 Hz f = 6000 Hz

Figure 9: Panel vibrations without control for harmonic frequencies: 2, 4, and 6 kHz.

4 Final remarks and perspectives

The results presented above prove that the proposed prototype of sandwich panel should work properly for a
wide frequency range as an efficient active/passive reducer of vibroacoustic transmission. They also illustrate
the vital fact that for high frequencies the vibroacoustic transmission is reduced passively (see Figure 9). We
should also remind that for higher frequencies the most of porous media behave like materials with rigid frame
(i.e., the elastic vibrations of skeleton tend to be negligible), so that much simpler (fluid-equivalent) models can
be used. However, for vibroacoustic applications in the low frequency range (where the active reduction proves
its necessity) the presented-here poroelastic modeling must be applied.

The model of sandwich panel was implemented in FEMLABr, and so it can be easily used in MATLABr

environment. This modeling allows us not only a reliable validation of passive or active elasto-poroelastic
panels, or prediction of vibroacoustic transmission loss, but – first of all – enables us to efficiently perform any
parametric survey and configuration optimization of these panels to determine the best assembly and the best
control strategy for reducing the vibroacoustic transmission over a wide frequency range.
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